Differential thermal analysis and solution growth of intermetallic compounds

نویسنده

  • Y. Janssen
چکیده

To obtain single crystals by solution growth, an exposed primary solidification surface in the appropriate, but often unknown, equilibrium alloy phase diagram is required. Furthermore, an appropriate crucible material is needed, necessary to hold the molten alloy during growth, without being attacked by it. Recently, we have used the comparison of realistic simulations with experimental differential thermal analysis (DTA) curves to address both these problems. We have found: 1) complex DTA curves can be interpreted to determine an appropriate heat treatment and starting composition for solution growth, without having to determine the underlying phase diagrams in detail. 2) DTA can facilitate identification of appropriate crucible materials. DTA can thus be used to make the procedure to obtain single crystals of a desired phase by solution growth more efficient. We will use some of the systems for which we have recently obtained single-crystalline samples using the combination of DTA and solution growth as examples. These systems are TbAl, Pr7Ni2Si5, and YMn4Al8.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and thermal stability of nanocrystalline Mg-6Al-1Zn-1Si alloy prepared via mechanical alloying

Thermal stability and the kinetics of the grain growth of nano-crystalline Mg-6Al-1Zn-1Si alloy prepared via mechanical alloying (MA) were investigated. It started with elemental powders, using a variety of analytical techniques including differential scanning calorimetry (DSC), X-ray diffraction method (XRD), and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (E...

متن کامل

EFFECTS OF THERMAL AGING ON INTERMETALLIC COMPOUNDS AND VOIDS FORMATION IN AuAl WIRE BONDING

There are several issues related to the mechanical and electrical wirebond failure during wirebonding process. Major factors are associated with AuAl intermetallic system. AuAl intermetallic compounds (IMC) can easily form at room temperature and can be accelerated with the elevated temperature. In this paper, pattern of intermetallic compounds growth and potential degradation due to voids in t...

متن کامل

Effects of process conditions on reliability, microstructure evolution and failure modes of SnAgCu solder joints

In this study, microstructure evolution at intermetallic interfaces in SnAgCu solder joints of an area array component was investigated at various stages of a thermal cycling test. Failure modes of solder joints were analyzed to determine the effects of process conditions on crack propagation. Lead-free printed-circuit-board (PCB) assemblies were carried out using different foot print designs o...

متن کامل

Morphological and Thermal Flux Analysis in as-Cast Al Alloy after Swarf Addition

In this research, effect of swarf addition on the microstructure of die cast aluminum A380 alloy and the possibility of altering the alloy structure in the metallic die has been studied. The microstructure mainly consists of the α-phase, eutectic, intermetallic compounds and porosity. Since the alloy solidifies under non-equilibrium conditions, the Scheil equation with exact amount of equilibri...

متن کامل

Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn–Ag–Cu/Cu solder joint during different thermal conditions

Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn-Ag-Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005